Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation

Identifieur interne : 000105 ( Chine/Analysis ); précédent : 000104; suivant : 000106

Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation

Auteurs : RBID : Pascal:13-0093878

Descripteurs français

English descriptors

Abstract

Efficient photocatalytic water-splitting systems require stable photocatalysts that have photocatalytic activity with repeated consecutive use. This study investigated H2 production under visible light irradiation with an Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst and KI as an electron donor. In addition, the stability and reusability of the catalyst were evaluated over multiple cycles of H2 production and catalyst regeneration. The results show that sintering temperature influenced the crystallinity and photocatalytic activity, as indicated by the X-ray diffraction analyses and H2 production rates. In particular, the catalyst sintered at 873 K yielded the highest quantum yield of 4.6% at 420 ± 5 nm of wavelength. After seven consecutive reaction cycles, the quantum yield decreased from 4.6% to 3.0% at the end of the seventh cycle. The decrease probably occurred because (1) particles of the catalyst underwent pronounced aggregation, which led to the increase in particle size; and (2) a release of significant metal ions was observed during H2 production, which led to a loss of the catalyst mass and potential changes in the photocatalytic activity. This study will help facilitate a search of stable photocatalysts for water splitting.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0093878

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Stability of an H
<sub>2</sub>
-producing photocatalyst (Ru/(CuAg)
<sub>0.15</sub>
In
<sub>0.3</sub>
Zn
<sub>1.4</sub>
S
<sub>2</sub>
) in aqueous solution under visible light irradiation</title>
<author>
<name>GUANGSHAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology</s1>
<s2>Harbin 150090</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150090</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Atlanta</settlement>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<orgName type="university">Georgia Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name>WEN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Civil and Environmental Engineering, New Jersey Institute of Technology</s1>
<s2>Newark, NJ 07102</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, NJ 07102</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PENG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology</s1>
<s2>Harbin 150090</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150090</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minakata, Daisuke" uniqKey="Minakata D">Daisuke Minakata</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Atlanta</settlement>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<orgName type="university">Georgia Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree St., Suite 320B</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Atlanta, GA 30332</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONGSHENG CHEN</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Atlanta</settlement>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<orgName type="university">Georgia Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Crittenden, John" uniqKey="Crittenden J">John Crittenden</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Atlanta</settlement>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<orgName type="university">Georgia Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree St., Suite 320B</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Atlanta, GA 30332</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0093878</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0093878 INIST</idno>
<idno type="RBID">Pascal:13-0093878</idno>
<idno type="wicri:Area/Main/Corpus">001229</idno>
<idno type="wicri:Area/Main/Repository">000501</idno>
<idno type="wicri:Area/Chine/Extraction">000105</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0360-3199</idno>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<title level="j" type="main">International journal of hydrogen energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aqueous solution</term>
<term>Chemical decomposition</term>
<term>Hydrogen production</term>
<term>Light irradiation</term>
<term>Particle size</term>
<term>Photocatalysis</term>
<term>Ruthenium</term>
<term>Supported catalyst</term>
<term>Water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eau</term>
<term>Ruthénium</term>
<term>Solution aqueuse</term>
<term>Production hydrogène</term>
<term>Décomposition chimique</term>
<term>Catalyseur sur support</term>
<term>Photocatalyse</term>
<term>Irradiation lumière visible</term>
<term>Dimension particule</term>
<term>Sulfure d'argent cuivre indium zinc</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Eau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Efficient photocatalytic water-splitting systems require stable photocatalysts that have photocatalytic activity with repeated consecutive use. This study investigated H
<sub>2</sub>
production under visible light irradiation with an Ru/(CuAg)
<sub>0.15</sub>
In
<sub>0.3</sub>
Zn
<sub>1.4</sub>
S
<sub>2</sub>
photocatalyst and KI as an electron donor. In addition, the stability and reusability of the catalyst were evaluated over multiple cycles of H
<sub>2</sub>
production and catalyst regeneration. The results show that sintering temperature influenced the crystallinity and photocatalytic activity, as indicated by the X-ray diffraction analyses and H
<sub>2</sub>
production rates. In particular, the catalyst sintered at 873 K yielded the highest quantum yield of 4.6% at 420 ± 5 nm of wavelength. After seven consecutive reaction cycles, the quantum yield decreased from 4.6% to 3.0% at the end of the seventh cycle. The decrease probably occurred because (1) particles of the catalyst underwent pronounced aggregation, which led to the increase in particle size; and (2) a release of significant metal ions was observed during H
<sub>2</sub>
production, which led to a loss of the catalyst mass and potential changes in the photocatalytic activity. This study will help facilitate a search of stable photocatalysts for water splitting.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0360-3199</s0>
</fA01>
<fA02 i1="01">
<s0>IJHEDX</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. hydrogen energy</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Stability of an H
<sub>2</sub>
-producing photocatalyst (Ru/(CuAg)
<sub>0.15</sub>
In
<sub>0.3</sub>
Zn
<sub>1.4</sub>
S
<sub>2</sub>
) in aqueous solution under visible light irradiation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUANGSHAN ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEN ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PENG WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MINAKATA (Daisuke)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YONGSHENG CHEN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CRITTENDEN (John)</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology</s1>
<s2>Harbin 150090</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Civil and Environmental Engineering, Georgia Institute of Technology</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Civil and Environmental Engineering, New Jersey Institute of Technology</s1>
<s2>Newark, NJ 07102</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree St., Suite 320B</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1286-1296</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17522</s2>
<s5>354000182502830090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>49 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0093878</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of hydrogen energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Efficient photocatalytic water-splitting systems require stable photocatalysts that have photocatalytic activity with repeated consecutive use. This study investigated H
<sub>2</sub>
production under visible light irradiation with an Ru/(CuAg)
<sub>0.15</sub>
In
<sub>0.3</sub>
Zn
<sub>1.4</sub>
S
<sub>2</sub>
photocatalyst and KI as an electron donor. In addition, the stability and reusability of the catalyst were evaluated over multiple cycles of H
<sub>2</sub>
production and catalyst regeneration. The results show that sintering temperature influenced the crystallinity and photocatalytic activity, as indicated by the X-ray diffraction analyses and H
<sub>2</sub>
production rates. In particular, the catalyst sintered at 873 K yielded the highest quantum yield of 4.6% at 420 ± 5 nm of wavelength. After seven consecutive reaction cycles, the quantum yield decreased from 4.6% to 3.0% at the end of the seventh cycle. The decrease probably occurred because (1) particles of the catalyst underwent pronounced aggregation, which led to the increase in particle size; and (2) a release of significant metal ions was observed during H
<sub>2</sub>
production, which led to a loss of the catalyst mass and potential changes in the photocatalytic activity. This study will help facilitate a search of stable photocatalysts for water splitting.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B06</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01A03A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Eau</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Water</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Agua</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ruthénium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ruthenium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Rutenio</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Production hydrogène</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hydrogen production</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Décomposition chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical decomposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Descomposición química</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Catalyseur sur support</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Supported catalyst</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Catalizador sobre soporte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Irradiation lumière visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Light irradiation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Irradiación luz visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sulfure d'argent cuivre indium zinc</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fN21>
<s1>063</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000105 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000105 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0093878
   |texte=   Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024